Quantitative structure—activity relationship analysis of a series of *trans*-octahydro-11-oxodibenzo-[b,e]-thiepin propionic acid derivatives

Subhash Ajmani*, Subhash Chandra Chaturvedi

Department of Pharmacy, Shri Govindram Seksaria Institute of Technology and Science, 23 Park Road, Indore – 452 003 (M.P.), India (Received 21 April 1997; accepted 10 September 1997)

Abstract – The structures of a series of antiinflammatory *trans*-octahydro-11-oxodibenzo-[*b,e*]-thiepin propionic acid ester and amide derivatives were submitted to molecular modeling software, and after energy minimization of the structures, a number of electronic, spatial and thermodynamic descriptors were calculated. After quantitative structure–activity relationship (QSAR) analysis the result showed that the electronic descriptors, especially partial atomic charges on C15 and C18, have important effects on the oral anti-inflammatory activity. © Elsevier, Paris

quantitative structure-activity relationship analysis / antiinflammatory activity / thiepin propionic acid esters and amides

1. Introduction

Extensive research is being carried out in our laboratory to find new potent derivatives of non-steroidal antiinflammatory drugs belonging to the aryl propionic acid category. This category of drugs suffers from gastrointestinal complications ranging from mild dyspepsia, gastric discomfort to nausea, vomiting and gastric bleeding [1]. In order to minimize these side effects the free carboxylic acid group is generally masked by derivatization, but apart from changing its physicochemical properties, it also alters the pharmacological activity of the drug to a considerable extent. To investigate the effects of esterification and amidation on various physicochemical properties of the molecule, a series of antiinflammatory trans-octahydro-11-oxo-dibenzo-[b,e]-thiepin propionic acid ester and amide derivatives (table 1) was subjected to quantitative structure-activity relationship (QSAR) analysis. Kurokawa et al. have synthesized this series to reduce ulcerogenicity of the parent acid [2]. Computer-aided molecular modeling was used for this study as it offers the opportunity to estimate a great number of physicochemical properties based on 3D

2. Method and data

The antiinflammatory activity data were taken from Kurokawa et al. [2]. These data were expressed as 'Percent inhibition of carageenan-induced hind paw edema in the rat caused by 5 mg/kg of drug (AA)'. The data were converted to 'Percent paw edema inhibition per micromole of drug per kilogram body weight (BA)' (table I) for QSAR analysis.

For molecular modeling and for the calculation of various descriptors different modules provided in molecular modeling software Cerius² version 1.6 were used [4]

The structures of the compounds (1–33, table I) were built using the molecular sketching facilities provided in the molecular modeling environment of Cerius². The energy of the molecules was minimized using a conjugate gradient algorithm [5]. The force field energy expressions were the bonds, angles, torsions, inversions and van der Waals terms. The minimization terminates where the root mean square (RMS) force on the model is less than 0.1000 kCal/

and detailed electronic structure of a molecule. This study may contribute to a better understanding of the relationship between structure and antiinflammatory activity [3].

^{*}Correspondence and reprints

Table I. Structures and carageenan-induced edema data for trans-octahydro-11-oxodibenzo-[b,e]-thiepin propionic acid ester and amide derivatives used in this study.

1 OCH₃ 21.6 1.3756 0.1385 2 OC₂H₃ 38.3 2.5466 0.4060 3 O¬/C₃H₁ 25.4 1.7601 0.2455 4 O¬/C₃H₁ 25.6 1.7740 0.2489 5 O¬/C₃H₃ 26.0 1.8747 0.2729 6 O¬/C₃H₃ 29.3 2.1126 0.3248 7 O¬/C₃H₁ 22.1 1.6555 0.2189 8 O¬/C₃H₁ 22.1 1.6555 0.2189 9 O¬/✓ 15.6 1.2060 0.0814 10 O¬/C₃H₃ 28.3 2.1992 0.3423 9 O¬/✓ 15.6 1.2060 0.0814 10 O¬/Ch 22.0 1.6742 0.2238 11 OCH₂Pβ 25.6 2.0200 0.3053 12 O(CH₂)Pβ 39.1 3.1949 0.5045 12 O(CH₂)Pβ 26.0 2.1974 0.3419 14 OCH₂-CH=CH₂ 33.5 2.3079 0.3632 15 OCH₂-CH=CHPħ 20.3 1.7075 0.2324 16 OCH₂-CH=CHPħ 20.3 1.7075 0.2324 16 OCH₂-CPH=CHPħ 20.3 1.7075 0.2324 16 OCH₂-COPħ 26.6 2.2481 0.3518 17 OCH₂-COPħ 26.6 2.2481 0.3518 17 OCH₂-COPħ 20.2 1.5776 0.1980 18 O(CH₂)P₀-CH₂-CH 28.1 2.2059 0.3436 20 O(CH₂)P¬N O 22.2 1.8540 0.2681 21 OCH₂-Py 30.6 2.4205 0.3839 22 OCH₂-3-Py 29.9 2.3651 0.3739 24 NH₂ 30.5 1.8509 0.2674 NHCH₃ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH₃ 14.6 0.9269 ¬0.0330 27 N(CH₃)Ph ¬5.5 ¬0.4329 ¬ − N(CH₃)PCOH 22.3 1.5497 0.1903 30 NHCH₃COOH 22.3 1.5497 0.1903 30 NHCH₃COOH 29.7 2.1470 0.3318 31 ¬N 5.3 0.3938 ¬0.4097 ¬0.3875 33 ¬N N-CH₃ 5.3 0.4097 ¬0.3875	Compound	R	AAa	BAb	log(BA)
3 O-nC ₃ H ₇ 25.4 1.7601 0.2455 4 O-iC ₄ H ₇ 25.6 1.7740 0.2489 5 O-nC ₄ H ₉ 26.0 1.8747 0.2729 6 O-iC ₄ H ₉ 29.3 2.1126 0.3248 7 O-nC ₃ H ₁₁ 22.1 1.6555 0.2189 8 O-nC ₄ H ₁₃ 28.3 2.1992 0.3423 9 O- 15.6 1.2060 0.0814 10 O-Ph 22.0 1.6742 0.2238 11 OCH ₂ Ph 25.6 2.0200 0.3053 12 O(CH ₂) ₂ Ph 39.1 3.1949 0.5045 13 O(CH ₂) ₂ Ph 39.1 3.1949 0.5045 13 O(CH ₂) ₂ Ph 26.0 2.1974 0.3419 14 OCH ₂ -CH=CH ₂ 33.5 2.3079 0.3632 15 OCH ₂ -CH=CH _P h 20.3 1.7075 0.2324 16 OCH ₂ -CH=CHPh 20.3 1.7075 0.2324 16 OCH ₂ COPh 26.6 2.2481 0.3518 17 OCH ₂ COPh, 20.6 2.2481 0.3518 17 OCH ₂ COOC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ Ph 0 22.2 1.8540 0.2681 21 OCH ₂ -2-Py 30.6 2.2405 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ Ph -5.5 -0.4329 - 28 N(CH ₃) ₂ Ph -5.5 -0.4329 - 29 N(CH ₃) ₂ Ph -5.5 -0.4329 - 29 N(CH ₃) ₂ Ph -5.5 -0.4329 - 29 N(CH ₃) ₂ Ph -5.5 -0.4329 - 29 N(CH ₃) ₂ Ph -5.5 -0.4329 - 29 N(CH ₃) ₂ Ph -5.5 -0.4329 - 20 N(CH ₃) ₂ Ph -5.5 -0.4329 - 20 N(CH ₃) ₂ Ph -5.5 -0.4329 - 20 N(CH ₃) ₂ Ph -5.5 -0.4329 - 20 N(CH ₃) ₂ Ph -5.5 -0.4329 - 20 N(CH ₃) ₂ Ph -5.5 -0.4329 - 20 N(CH ₃) ₂ Ph -5.5 -0.4329 - 20 N(CH ₃) ₂ Ph -5.5 -0.4329 - 20 N(CH ₃) ₂ Ph -5.5 -0.4329 - 20 N(CH ₃) ₂ Ph -5.5 -0.4329 - 21 N(CH ₃) ₂ OH -9.754	1	OCH ₃	21.6	1.3756	0.1385
4 O-iC₃H₂ 25.6 1.7740 0.2489 5 O-nC₄H₀ 26.0 1.8747 0.2729 6 O-iC₃H₀ 29.3 2.1126 0.3248 7 O-nC₃H₁ 22.1 1.6555 0.2189 8 O-nC₀H₁₃ 28.3 2.1992 0.3423 9 O- 15.6 1.2060 0.0814 10 O-Ph 22.0 1.6742 0.2238 11 OCH₂Ph 25.6 2.0200 0.3053 12 O(CH₂)₂Ph 39.1 3.1949 0.5045 13 O(CH₂)₂Ph 39.1 3.1949 0.5045 13 O(CH₂)₂Ph 26.0 2.1974 0.3419 14 OCH₂-CH=CH₂ 33.5 2.3079 0.3632 15 OCH₂-CH=CHPh 20.3 1.7075 0.2324 16 OCH₂-CH=CHPh 20.3 1.7075 0.2324 16 OCH₂-OC₂H₅ 20.2 1.5776 0.1980 18 O(CH₂)₂OC₂H₅ 34.6 2.6054 0.4159 19 O(CH₂)₂OC₂H₅ 34.6 2.6054 0.4159 19 O(CH₂)₂OC₂H₅ 34.6 2.6054 0.4159 20 O(CH₂)₂-N₀ 22.2 1.8540 0.2681 21 OCH₂-2-Nŷ 30.6 2.4205 0.3839 22 O(CH₂)₂-Pŷ 30.6 2.4205 0.3839 23 O(CH₂)₂-2-Pŷ 30.6 2.4205 0.3839 24 NH₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH₃ 14.6 0.9269 -0.0330 27 N(CH₃)₂ 1.7 0.1790 -0.7472 28 N(CH₃)₂ 1.5 5.3 0.3938 -0.4047 32 -N O 7.1 0.5304 -0.2754	2	OC_2H_5	38.3	2.5466	0.4060
5 O−nC₄H₀ 26.0 1.8747 0.2729 6 O−iC₄H₀ 29.3 2.1126 0.3248 7 O−nC₃H₁ 22.1 1.6555 0.2189 8 O−nC₃H₁₃ 28.3 2.1992 0.3423 9 O− 15.6 1.2060 0.0814 10 O−Ph 22.0 1.6742 0.2238 11 OCH₃Ph 25.6 2.0200 0.3053 12 O(CH₂)₽h 39.1 3.1949 0.5045 13 O(CH₂)Ph 26.0 2.1974 0.3419 14 OCH₂-CH=CH₂ 33.5 2.3079 0.3632 15 OCH₂-CH=CH₂ 33.5 2.3079 0.3632 16 OCH₂-CH=CH₂h 20.3 1.7075 0.2324 16 OCH₂-CH=CH₂h 20.3 1.7075 0.1980 18 O(CH₂)₂OC₃H₂ 34.6 2.6054 0.4159 19 O(CH₂)₂OC₃H₂ 34.6 2.6054 0.4159	3	$O-nC_3H_7$	25.4	1.7601	0.2455
6 O-iC ₄ H ₉ 29.3 2.1126 0.3248 7 O-nC ₅ H ₁₁ 22.1 1.6555 0.2189 8 O-nC ₆ H ₁₃ 28.3 2.1992 0.3423 9 O- 15.6 1.2060 0.0814 10 O-Ph 22.0 1.6742 0.2238 11 OCH ₂ Ph 25.6 2.0200 0.3053 12 O(CH ₂) ₂ Ph 39.1 3.1949 0.5045 13 O(CH ₂) ₃ Ph 26.0 2.1974 0.3419 14 OCH ₂ -CH=CH ₂ 33.5 2.3079 0.3632 15 OCH ₂ -CH=CHPh 20.3 1.7075 0.2324 16 OCH ₂ -CH=CHPh 20.3 1.7075 0.2324 16 OCH ₂ -CH=CHPh 20.3 1.7075 0.2324 16 OCH ₂ COPh 26.6 2.2481 0.3518 17 OCH ₃ COC ₂ H ₅ 20.2 1.5776 0.1980 18 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -2-Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ Ph -5.5 -0.4329 - 28° N(CH ₃) ₂ Ph -5.5 -0.4329 - 29 N(CH ₂) ₂ OH 22.3 1.5497 0.1903 30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N O 7.1 0.5304 -0.2754	4	$O-iC_3H_7$	25.6	1.7740	0.2489
7 O-nC ₃ H ₁₁ 22.1 1.6555 0.2189 8 O-nC ₆ H ₁₃ 28.3 2.1992 0.3423 9 O- 15.6 1.2060 0.0814 10 O-Ph 22.0 1.6742 0.2238 11 OCH ₂ Ph 25.6 2.0200 0.3053 12 O(CH ₂) ₂ Ph 39.1 3.1949 0.5045 13 O(CH ₂) ₃ Ph 26.0 2.1974 0.3419 14 OCH ₂ -CH=CH ₂ 33.5 2.3079 0.3632 15 OCH ₂ -CH=CHPh 20.3 1.7075 0.2324 16 OCH ₂ COPh 26.6 2.2481 0.3518 17 OCH ₂ COPh 26.6 2.2481 0.3518 17 OCH ₂ COPh 26.6 2.2481 0.3518 18 O(CH ₂) ₂ OC ₃ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ OC ₃ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ OC ₃ H ₅ 34.6 2.6054 0.4159 20 O(CH ₂) ₂ OC ₃ H ₅ 34.6 2.6054 0.4159 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -N O 22.2 1.8540 0.2681 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -2-Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28 ^c N(CH ₃) ₃ 2.7 0.1790 -0.7472 28 ^c N(CH ₃) ₃ 3.7 0.7472 -0.7472 28 ^c N(CH ₃) ₃ 3.7 0.7472 -0.7472 28 ^c N(CH ₃) ₃ 3.7 0.7472 -0.7472 -0.7472 28 ^c N(CH ₃) ₃ 3.7 0.7472 -0.7472 28 ^c N(CH ₃) ₃ 3.7 0.7472 -0.7472 28 ^c N(CH ₃) ₃ 3.7 0.74	5	$O-nC_4H_9$	26.0	1.8747	0.2729
8 O-nC ₀ H ₁₃ 28.3 2.1992 0.3423 9 O- 15.6 1.2060 0.0814 10 O-Ph 22.0 1.6742 0.2238 11 OCH ₂ Ph 25.6 2.0200 0.3053 12 O(CH ₂) ₂ Ph 39.1 3.1949 0.5045 13 O(CH ₂) ₃ Ph 26.0 2.1974 0.3419 14 OCH ₂ -CH=CH ₂ 33.5 2.3079 0.3632 15 OCH ₂ -CH=CHPh 20.3 1.7075 0.2324 16 OCH ₂ COPh 26.6 2.2481 0.3518 17 OCH ₂ COPh 26.6 2.2481 0.3518 17 OCH ₂ COO ₂ H ₅ 34.6 2.6054 0.4159 18 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ -N 0 22.2 1.8540 0.2681 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28 ^c N(CH ₂) ₂ OH 22.3 1.5497 0.1903 30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N O 7.1 0.5304 -0.2754	6	$O-iC_4H_9$	29.3	2.1126	0.3248
9 O-	7	$O-nC_5H_{11}$	22.1	1.6555	0.2189
10 O−Ph 22.0 1.6742 0.2238 11 OCH ₂ Ph 25.6 2.0200 0.3053 12 O(CH ₂) ₂ Ph 39.1 3.1949 0.5045 13 O(CH ₂) ₂ Ph 26.0 2.1974 0.3419 14 OCH ₂ −CH=CH ₂ 33.5 2.3079 0.3632 15 OCH ₂ −CH=CHPh 20.3 1.7075 0.2324 16 OCH ₂ COPh 26.6 2.2481 0.3518 17 OCH ₂ COOC ₂ H ₅ 20.2 1.5776 0.1980 18 O(CH ₂) ₂ OC ₃ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.2059 0.3436 20 O(CH ₂) ₂ OC ₃ H ₅ 28.1 2.2059 0.3436 20 O(CH ₂) ₂ OC ₃ H ₅ 30.6 2.4205 0.3839 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28° N(CH ₃) ₂ 2.7 0.1790 -0.7472 28° N(CH ₃) ₂ Ph -5.5 -0.4329 - 29 N(CH ₂) ₂ OH 22.3 1.5497 0.1903 30 NHCH ₃ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N O 7.1 0.5304 -0.2754	8	$O-nC_6H_{13}$	28.3	2.1992	0.3423
11 OCH₂Ph 25.6 2.0200 0.3053 12 O(CH₂)₂Ph 39.1 3.1949 0.5045 13 O(CH₂)₂Ph 26.0 2.1974 0.3419 14 OCH₂-CH=CH₂ 33.5 2.3079 0.3632 15 OCH₂-CH=CHPh 20.3 1.7075 0.2324 16 OCH₂-COPh 26.6 2.2481 0.3518 17 OCH₂-COOC₂H₅ 20.2 1.5776 0.1980 18 O(CH₂)₂-OC₂H₅ 34.6 2.6054 0.4159 19 O(CH₂)₂-OC₂H₅ 34.6 2.6054 0.4159 20 O(CH₂)₂-OC₂H₂ 28.1 2.2059 0.3436 20 O(CH₂)₂-OC₂H₂ 28.1 2.2059 0.3436 20 O(CH₂)₂-OC₂H₂ 28.1 2.2059 0.3436 21 OCH₂-2-Py 30.6 2.4205 0.3839 22 OCH₂-2-Py 30.6 2.4205 0.3839 23 O(CH₂)₂-Py 25.5 2.0887 <th< td=""><td>9</td><td>0-</td><td>15.6</td><td>1.2060</td><td>0.0814</td></th<>	9	0-	15.6	1.2060	0.0814
12 O(CH ₂) ₂ Ph 39.1 3.1949 0.5045 13 O(CH ₂) ₃ Ph 26.0 2.1974 0.3419 14 OCH ₂ -CH=CH ₂ 33.5 2.3079 0.3632 15 OCH ₂ -CH=CHPh 20.3 1.7075 0.2324 16 OCH ₂ COPh 26.6 2.2481 0.3518 17 OCH ₂ COOC ₂ H ₅ 20.2 1.5776 0.1980 18 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 20 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 20 O(CH ₂) ₂ OCH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ OCH ₂) ₂ OH 22.2 1.8540 0.2681 <	10	O-Ph	22.0	1.6742	0.2238
13 O(CH ₂),Ph 26.0 2.1974 0.3419 14 OCH ₂ -CH=CH ₂ 33.5 2.3079 0.3632 15 OCH ₂ -CH=CHPh 20.3 1.7075 0.2324 16 OCH ₂ COPh 26.6 2.2481 0.3518 17 OCH ₂ COOC ₂ H ₅ 20.2 1.5776 0.1980 18 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ -N O 22.2 1.8540 0.2681 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -2-Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28° N(CH ₃) ₂ 2.7 0.1790 -0.7472 28° N(CH ₂) ₂ Ph -5.5 -0.4329 - 29 N(CH ₂) ₂ OH 22.3 1.5497 0.1903 30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N 0 7.1 0.5304 -0.2754	11	OCH₂Ph	25.6	2.0200	0.3053
14 OCH2-CH=CH2 33.5 2.3079 0.3632 15 OCH2-CH=CHPh 20.3 1.7075 0.2324 16 OCH2COPh 26.6 2.2481 0.3518 17 OCH2COOC2H5 20.2 1.5776 0.1980 18 O(CH2)2OC3H5 34.6 2.6054 0.4159 19 O(CH2)2OCH202OH 28.1 2.2059 0.3436 20 O(CH2)2-NO 0 22.2 1.8540 0.2681 21 OCH2-2-Py 30.6 2.4205 0.3839 22 OCH2-3-Py 29.9 2.3651 0.3739 23 O(CH2)2-Py 25.5 2.0887 0.3199 24 NH2 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH3 14.6 0.9269 -0.0330 27 N(CH3)2 2.7 0.1790 -0.7472 28c N(CH2)2Ph -5.5 -0.4329 - 29 N(CH2)2OH 22.3 1.5497 0.1903	12	$O(CH_2)_2Ph$	39.1	3.1949	0.5045
15 OCH ₂ -CH=CHPh 20.3 1.7075 0.2324 16 OCH ₂ COPh 26.6 2.2481 0.3518 17 OCH ₂ COOC ₂ H ₅ 20.2 1.5776 0.1980 18 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ OCH ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ OP 0 22.2 1.8540 0.2681 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -2-Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28 ^c N(CH ₂) ₂ OH	13	$O(CH_2)_3Ph$	26.0	2.1974	0.3419
16 OCH ₂ COPh 26.6 2.2481 0.3518 17 OCH ₂ COOC ₂ H ₅ 20.2 1.5776 0.1980 18 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ -N O 22.2 1.8540 0.2681 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -2-Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28c N(CH ₂) ₂ Ph -5.5 -0.4329 - 29 N(CH ₂) ₂ OH 22.3 1.5497 0.1903 30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.39	14	OCH ₂ -CH=CH ₂	33.5	2.3079	0.3632
17 OCH ₂ COOC ₂ H ₅ 20.2 1.5776 0.1980 18 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ -N O 22.2 1.8540 0.2681 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -2-Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28c N(CH ₂) ₂ Ph -5.5 -0.4329 - 29 N(CH ₂) ₂ OH 22.3 1.5497 0.1903 30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N O 7.1 0.5304 -0.2754	15	OCH ₂ -CH=CHPh	20.3	1.7075	0.2324
18 O(CH ₂) ₂ OC ₂ H ₅ 34.6 2.6054 0.4159 19 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ -N O 22.2 1.8540 0.2681 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -2-Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28c N(CH ₂) ₂ Ph -5.5 -0.4329 - 29 N(CH ₂) ₂ OH 22.3 1.5497 0.1903 30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N 5.3 0.3938 -0.4047 32 -N 5.3 0.5304 -0.27	16	OCH₂COPh	26.6	2.2481	0.3518
19 O(CH ₂) ₂ O(CH ₂) ₂ OH 28.1 2.2059 0.3436 20 O(CH ₂) ₂ -N O 22.2 1.8540 0.2681 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -2-Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28c N(CH ₃) ₂ Ph -5.5 -0.4329 - 29 N(CH ₂) ₂ Ph 22.3 1.5497 0.1903 30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N 0 7.1 0.5304 -0.2754	17	OCH ₂ COOC ₂ H ₅	20.2	1.5776	0.1980
20 O(CH ₂) ₂ -N O 22.2 1.8540 0.2681 21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -2-Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28° N(CH ₃) ₂ 2.7 0.1790 -0.7472 28° N(CH ₂) ₂ Ph -5.5 -0.4329 - 29 N(CH ₂) ₂ OH 22.3 1.5497 0.1903 30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N O 7.1 0.5304 -0.2754	18	$O(CH_2)_2OC_2H_5$	34.6	2.6054	0.4159
21 OCH ₂ -2-Py 30.6 2.4205 0.3839 22 OCH ₂ -3-Py 29.9 2.3651 0.3739 23 O(CH ₂) ₂ -2-Py 25.5 2.0887 0.3199 24 NH ₂ 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28° N(CH ₂) ₂ Ph -5.5 -0.4329 - 29 N(CH ₂) ₂ OH 22.3 1.5497 0.1903 30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N 0 7.1 0.5304 -0.2754	19	$O(CH_2)_2O(CH_2)_2OH$	28.1	2.2059	0.3436
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	$O(CH_2)_2-N$ O	22.2	1.8540	0.2681
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	OCH ₂ -2-Py	30.6	2.4205	0.3839
24 NH2 30.5 1.8509 0.2674 25 NHOH 29.9 1.9101 0.2811 26 NHCH3 14.6 0.9269 -0.0330 27 N(CH3)2 2.7 0.1790 -0.7472 28c N(CH2)2Ph -5.5 -0.4329 - 29 N(CH2)2OH 22.3 1.5497 0.1903 30 NHCH2COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N 0 7.1 0.5304 -0.2754	22	OCH ₂ -3-Py	29.9	2.3651	0.3739
25 NHOH 29.9 1.9101 0.2811 26 NHCH ₃ 14.6 0.9269 -0.0330 27 N(CH ₃) ₂ 2.7 0.1790 -0.7472 28 ^c N(CH ₂) ₂ Ph -5.5 -0.4329 - 29 N(CH ₂) ₂ OH 22.3 1.5497 0.1903 30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N 0 7.1 0.5304 -0.2754	23	$O(CH_2)_2$ -2-Py	25.5	2.0887	0.3199
26 NHCH3 14.6 0.9269 -0.0330 27 N(CH3)2 2.7 0.1790 -0.7472 28c N(CH2)2Ph -5.5 -0.4329 - 29 N(CH2)2OH 22.3 1.5497 0.1903 30 NHCH2COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N 0 7.1 0.5304 -0.2754	24	NH_2	30.5	1.8509	0.2674
27 $N(CH_3)_2$ 2.7 0.1790 -0.7472 28c $N(CH_2)_2Ph$ -5.5 -0.4329 $-$ 29 $N(CH_2)_2OH$ 22.3 1.5497 0.1903 30 $NHCH_2COOH$ 29.7 2.1470 0.3318 31 $-N$ 5.3 0.3938 -0.4047 32 $-N$ 0.5304 -0.2754	25	NHOH	29.9	1.9101	0.2811
28c $N(CH_2)_2Ph$ -5.5 -0.4329 $-$ 29 $N(CH_2)_2OH$ 22.3 1.5497 0.1903 30 $NHCH_2COOH$ 29.7 2.1470 0.3318 31 $-N$ 5.3 0.3938 -0.4047 32 $-N$ 0.5304 -0.2754	26	NHCH ₃	14.6	0.9269	-0.0330
29 N(CH ₂) ₂ OH 22.3 1.5497 0.1903 30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N O 7.1 0.5304 -0.2754	27	$N(CH_3)_2$	2.7	0.1790	-0.7472
30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N O 7.1 0.5304 -0.2754	28 ^c	$N(CH_2)_2Ph$	-5.5	-0.4329	
30 NHCH ₂ COOH 29.7 2.1470 0.3318 31 -N 5.3 0.3938 -0.4047 32 -N O 7.1 0.5304 -0.2754	29	$N(CH_2)_2OH$	22.3	1.5497	0.1903
31 -N 5.3 0.3938 -0.4047 32 -N 0 7.1 0.5304 -0.2754	30	NHCH₂COOH	29.7	2.1470	
0,2154	31	-N	5.3	0.3938	
33 $-N$ N - CH_3 5.3 0.4097 -0.3875	32	-NO	7.1	0.5304	-0.2754
	33	$-$ N $-$ CH $_3$	5.3	0.4097	-0.3875

^aPercent inhibition of carageenan-induced paw edema in the rat at 5 mg/kg orally; ^bpercent inhibition of paw edema per micromole of drug per kilogram of body weight; ^ccompound not included in the study.

mol/Å. The non-bond and the hydrogen-bond lists were updated every 50 steps and the model was updated every 5 steps.

After energy minimization of the structures, the following descriptors were calculated for the QSAR study using the facilities provided in 'Drug Discovery Workbench QSAR+' of Cerius² (values only of those descriptors occurring in different equations are given in *table II*).

2.1. Thermodynamic descriptors

- a. Desolvation free energy for water (FH₂O) [6-8]
- b. Desolvation free energy for octanol (FOCT) [6-8]
- c. Log of partition coefficient (**LOGP**) [6–8]
- d. Molecular refractivity (MR) [9, 10]

2.2. Spatial descriptors

- a. Molecular surface area (AREA) [11, 12]
- b. Density (**DENSITY**) [11, 12]
- c. Molecular weight (MW) [11, 12]
- d. Principal moment of inertia (PMI) [13]
- e. Principal moment of inertia *x*-component (**PMIX**) [13]
- f. Principal moment of inertia y-component (PMIY) [13]
- g. Principal moment of inertia z-component (**PMIZ**) [13]
- h. Number of rotatable bonds (**ROTBONDS**) [13]
- i. Molecular volume (VM) [11, 12]

2.3. Electronic descriptors

- a. Sum of atomic polarizibilities (APOL) [7, 14]
- b. Dipole moment (**DIPOLE**) [15–18]
- c. Dipole moment x-component (XDIP) [15–18]
- d. Dipole moment y-component (**YDIP**) [15–18]
- e. Dipole moment z-component (**ZDIP**) [15–18]
- f. Energy of highest occupied molecular orbital (HOMO) [19, 20]
- g. Energy of lowest unoccupied molecular orbital (LUMO) [19, 20]
- h. Partial atomic charges [21, 22]

The HOMO, LUMO and partial atomic charges were calculated using the CNDO2 method. Dipole moments were then calculated using partial atomic charges and atomic coordinates. The atomic numbering scheme used in the charge calculation is shown in figure 1.

To generate QSAR equations a stepwise multiple parameter regression analysis method was used [23]. The following statistical measures were used:

n: the number of samples in the regression r: coefficient of correlation

r²: coefficient of determination s: standard deviation t: t-test for statistical significance

where

 $s = \text{SQRT}[\text{SUM}(y_{\text{calc}} - y_{\text{obs}})^2 / (n - k - 1)]$ k = number of variables in the equation

3. Results and discussion

All calculated descriptors and log(BA) of compounds 1–33 were subjected to stepwise multiple parameter regression analysis, and the following equations were obtained:

$$log(BA) = 10.8424(2.0567)C15 + 0.9758(0.2015), (1)$$

$$n = 32$$
, $r = 0.693$, $r^2 = 0.481$, $t = 5.272$, $s = 0.0368$;

$$log(BA) = 10.7711(1.9003)C15 -0.7021(0.2831)XDIP + 0.8255(0.1861),$$
(2)

$$n = 32$$
, $r = 0.756$, $r^2 = 0.572$, $t = 4.400$, $s = 0.0346$;

$$log(BA) = 9.8093(1.8080)C15 - 0.8448(0.2693)XDIP - 0.0250(0.0105)FOCT + 0.4123(0.1727),$$
 (3)

$$n = 32$$
, $r = 0.803$, $r^2 = 0.644$, $t = 4.111$, $s = 0.0326$;

$$log(BA) = 8.2057(1.7527)C15 - 1.0018(0.2519)XDIP - 0.0313(0.0098)FOCT - 0.2754(0.1048)ZDIP + 0.1222(0.1569).$$
(4)

$$n = 32$$
, $r = 0.845$, $r^2 = 0.717$, $t = 4.132$, $s = 0.0302$;

$$\begin{aligned} \log(BA) &= 7.2509(1.7488)C15 - \\ 1.0261(0.2478)XDIP - 0.0365(0.0106)FOCT \\ &- 0.3144(0.1077)ZDIP - 0.2707(0.1807)C19 \\ &- 4.6844(3.2926)C11 - 0.7855(0.1502), \end{aligned} \tag{5}$$

$$n = 32$$
, $r = 0.872$, $r^2 = 0.760$, $t = 3.629$, $s = 0.0300$.

Out of equations (1)–(5), equation (4) is statistically significant and has a good correlation coefficient. The independent variables of equations (1)–(5) are not significantly cross-correlated which is evident from the correlation matrix (table III). In equations (1)–(5) C15 has the highest correlation with log(BA). The plot of log(BA) as a function of C15 is given in figure 2.

No significant improvement was observed when parabolic relationships were searched including all the descriptors and the following equation was obtained:

$$\begin{split} \log(\text{BA}) &= -265.98(90.95)\text{C}15^2 \\ &- 28.9836(13.3384)\text{C}15 - 0.0231(0.0093)\text{FOCT} \\ &- 0.6705(0.2674)\text{XDIP} - 0.2752(0.1788)\text{C}19 \\ &- 28.1545(21.4024)\text{C}2 + 3.8698(3.3977)\text{C}13 \\ &- 7.8745(0.1473), \end{split} \tag{6}$$

n = 32, r = 0.882, $r^2 = 0.778$, t = 3.468, s = 0.0300.

Table II. Calculated values of descriptors for compounds 1–33.

ompound	DENSITY (g/mL)	FOCT (kcal/mol)	DIPOLE (Debyes)	ROTBONDS	XDIP (Debyes)	ZDIP (Debyes
1	1.1059	-8.6299	2.9609	3	-0.3137	-0.442
2	1.0929	-9.1 49 9	2.2303	4	-0.2749	-0.3533
3	1.0699	-9.6700	2.1762	5	-0.2879	-0.240
4	1.0750	-9.3499	2.1194	4	-0.2088	-0.294
5	1.0576	-10.1900	2.2108	6	-0.3081	-0.231
6	1.0565	-9.8699	2.2998	5 7	-0.2534	-0.406
7	1.0468	-10.7100	2.1790		-0.3010	-0.164
8	1.0335	-11.2300	2.2130	8	-0.2788	-0.150 -0.315
9	1.0606	-11.6300	2.8329	4	-0.3164	-0.313 -0.342
10	1.1416	-12.7899	2.7494	4	-0.3589 -0.4004	-0.342 -0.303
11	1.1231	-13.2499	2.5456	5 6	-0.4004	-0.303 -0.455
12	1.1033	-13.7699	2.2394	7	-0.2105	-0. 4 33 -0.374
13	1.0831	-14.2899	2.0752	5	-0.2105 -0.1055	-0.595
14	1.0984	-10.0600	2.9138	6	-0.1053 -0.1067	-0.353
15	1.1148	-14.6700	2.2801		0.0034	-0.706
16	1.1524	-11.6399	3.5096	6 7	-0.2556	-0.737
17	1.1306	-9.8099	3.7516	7	-0.1513	-0.430
18	1.0850	-12.0000	2.3009	8	-0.1571	-0.377
19	1.1081	-19.6400	1.9766 3.2132	6	-0.1371	-0.627
20	1.0843	-13.3800	3.2132 2.9264	5	-0.2526 -0.4500	0.230
21	1.1363	-13.9200	2.8782	5	-0.2904	0.517
22	1.1414	-13.9200 -14.4200	2.5805	6	-0.1818	-0.093
23	1.1257	-14.4200 -14.9399	2.7735	ž	-0.2181	0.112
24	1.1079	-14.9399 -18.7299	2.0309	$\frac{2}{3}$	-0.0914	0.164
25	1.1374	-11.6099	2.0364	3	-0.1845	0.094
26	1.0873	-8.2799	1.9028	ž	-0.0827	0.082
27	1.0688 1.1014	-12.4400	1.8696	4	-0.0107	-0.387
28 29	1.0953	-19.7699	2.6038	5	0.0549	-0.528
30	1.1481	-17.7700	2.6425	5	-0.3026	-0.036
30 31	1.0588	-10.5600	1.7683	3	-0.0801	0.079
32	1.0971	-11.8500	2.2255	3	-0.0390	0.044
33	1.0602	-10.1800	1.9392	3	-0.1514	-0.024
ompound	C2	C3	C5	C11	C13	C14
1	-0.26375	-0.06462	-0.26212	-0.14286	-0.13043	0.0009
2	-0.26339	-0.06406	-0.26196	-0.14417	-0.13090	0.0189
3	-0.26304	-0.06311	-0.26219	-0.14301	-0.13567	0.0078
4	-0.26306	-0.06277	-0.26228	-0.14283	-0.13324	0.0071
5	-0.26272	-0.06199	-0.26234	-0.14274	-0.14051	0.0069
6	-0.26248	0.06186	-0.26249	-0.14186	-0.12629	0.0117
7	-0.26302	-0.06249	-0.26202	-0.14297	-0.12983	0.0160
8	-0.26293	-0.06150	-0.26233	-0.14303	-0.13558	0.0117
9	-0.26199	-0.05954	-0.26307	-0.13934	-0.14654	-0.012
10	-0.26309	-0.06306	-0.26246	-0.14260	-0.13724	-0.008
11	-0.26219	-0.06064	-0.26275	-0.13977	-0.14984	-0.017
12	-0.26281	-0.06180	-0.26168	-0.14776	-0.12961	0.020
13	-0.26131	-0.05645	-0.26287	-0.13908	-0.11891	0.023
14	-0.26362	-0.06341	-0.26216	-0.14275	-0.13354	-0.001
15	-0.26969	-0.05283	-0.26382	-0.13455	-0.13044	-0.001
16	-0.26408	-0.06633	-0.26186	-0.14435	-0.11917	0.0111
17	-0.26358	-0.06376	-0.26269	-0.14106	-0.13909	-0.012 0.0024
18	-0.26316	-0.06281	-0.26228	-0.14291 0.10460	-0.13451	-0.0024 -0.001
19	-0.26411	-0.06309	-0.26286	-0.10469 -0.10419	-0.13353 0.14125	-0.001 -0.007
20	-0.26299	-0.06086	-0.26267 0.26256		-0.14125 -0.13454	0.007
21	-0.26296	-0.06164	-0.26256 0.26245	-0.14008 -0.14165	-0.13434 -0.13349	0.001
22	-0.26269	-0.06149	-0.26245 -0.26242	-0.14165 -0.14128	-0.13349 -0.14894	0.000.
23	-0.26256	-0.05993		-0.14128 -0.14163	-0.14694 -0.11656	-0.003
24	-0.26382	-0.06559	-0.26215 0.26177		-0.11636 -0.12114	0.033
25	-0.26408	-0.06667	-0.26177 0.26268	-0.14479 0.13036	-0.12114 -0.12750	-0.015
26	-0.26296	-0.06311	-0.26268	-0.13936 0.14053		-0.013 -0.017
27	-0.26288	-0.06293	-0.26258 0.26205	-0.14053	-0.12126 -0.12705	-0.017 -0.002
28	-0.26208	-0.05902	-0.26295 0.26201	-0.13882 0.14303	-0.12705 -0.14232	-0.002 -0.005
29	-0.26379	-0.06515	-0.26201 0.26235	-0.14303 -0.13959		-0.003 -0.024
30	-0.26408	-0.06678	-0.26235 0.26281	-0.13939 -0.14027	-0.11652 -0.12576	-0.024
31	-0.26249	-0.06055 0.06404	-0.26281 0.26254		-0.12376 -0.11387	-0.007 -0.011
32 33	-0.26326 -0.26215	-0.06404 -0.06059	-0.26254 -0.26299	-0.14133 -0.14026	-0.11387 -0.12746	-0.011 -0.002

Table II. Continued.

Compound	ぜお	C'%	ሪ ነን	V2 2	SIR
1	-0.05959	0.62466	-0.42294	-0.52313	-0.40745
2	-0.04519	0.60991	-0.41798	-0.53608	-0.41140
3	-0.06979	0.60821	-0.41889	-0.54519	-0.41665
4	-0.07028	0.61972	-0.42439	-0.55640	-0.41911
5	-0.07002	0.60861	-0.41876	-0.54480	-0.41943
6	-0.07604	0.59605	-0.40979	-0.53808	-0.42223
7	-0.07129	0.60555	-0.41920	-0.54629	-0.42003
8	-0.07246	0.60646	-0.41952	-0.54749	-0.42264
9	-0.08468	0.59564	-0.42217	0.53903	-0.44316
10	-0.06833	0.59211	-0.41596	-0.52201	-0.41692
11	-0.08557	0.62392	-0.41869	-0.50079	-0.42666
12	-0.04522	0.60461	-0.42568	-0.54739	-0.44262
13	-0.06721	0.60059	-0.41969	-0.54647	-0.48963
14	-0.05839	0.61106	-0.42092	-0.53350	-0.41598
15	-0.08976	0.60031	-0.41894	-0.54581	-0.45461
16	-0.06728	0.59623	-0.42455	-0.54146	-0.40664
17	-0.06857	0.61252	-0.41405	-0.49514	-0.41269
18	-0.05385	0.60732	-0.42283	-0.50450	-0.41288
19	-0.05707	0.60973	-0.41769	-0.52989	-0.41035
20	-0.07299	0.60853	-0.41882	-0.52647	0.43055
21	-0.06578	0.60559	-0.42037	-0.52970	-0.43969
22	-0.06338	0.60828	-0.42255	-0.53580	-0.42329
23	-0.05127	0.60296	-0.40812	-0.49508	-0.43554
24	-0.08551	0.48888	-0.42978	-0.47709	-0.41152
25	-0.03728	0.55081	-0.40649	-0.52503	-0.39894
26	-0.10026	0.49896	-0.42243	-0.50326	-0.42291
27	-0.10275	0.51634	-0.43618	-0.53073	-0.42777
28	-0.08492	0.48508	-0.38758	-0.51980	-0.42990
29	-0.06273	0.47539	-0.38181	-0.49948	-0.39667
30	-0.09804	0.48147	-0.41678	-0.48688	-0.39396
31	-0.09902	0.48605	-0.44688	-0.53982	-0.43799
32	-0.10178	0.48831	-0.44418	-0.53689	-0.42537
33	-0.09338	0.48572	0.44764	-0.53403	-0.44535

Figure 1. Atomic numbering scheme used for the charge calculation of compounds 1-33.

To investigate other relationships, C15 was eliminated and the remaining descriptors were subjected to stepwise multiple parameter regression analysis. The following equations were obtained:

$$\log(BA) = 3.2599(0.7581)C18 - 1.6861(0.2199),$$
(7)

$$n = 32, r = 0.618, r^2 = 0.381, t = 4.300, s = 0.0402;$$

$$\log(BA) = 3.9431(0.6075)C18$$

$$-0.0464(0.0102)FOCT - 2.6622(0.1708),$$
(8)

$$n = 32, r = 0.800, r^2 = 0.639, t = 5.070, s = 0.0317;$$

$$\log(BA) = 3.8667(0.5361)C18$$

$$-0.0462(0.0090)FOCT + 191.45(62.69)C5$$

$$+47.63(0.15),$$
(9)

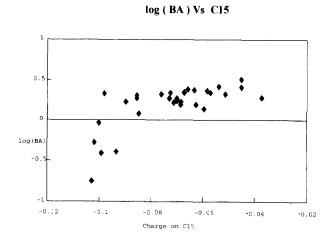

$$n = 32, r = 0.854, r^2 = 0.729, t = 5.017, s = 0.0285;$$

Table III. Correlation matrix for the parameters in equations (1)–(5).

	log(BA)	C15	XDIP	FOCT	ZDIP	C19	C11
log(BA)	1.000						
CĬŜ	0.693	1.000					
XDIP	0.312	0.015	1.000				
FOCT	0.340	0.214	0.213	1.000			
ZDIP	0.334	0.293	0.172	0.115	1.000		
C19	0.349	0.183	0.084	0.105	0.104	1.000	
ČII	0.029	0.052	0.015	0.338	0.194	0.016	1.000

Table IV. Correlation matrix for the parameters in equations (7)–(10).

	log(BA)	C18	FOCT	C5	O20	C3	C11
log(BA)	1.000						
C18	0.617	1.000					
FOCT	0.340	0.247	1.000				
C5	0.333	0.046	0.003	1.000			
O20	0.060	0.377	0.385	0.063	1.000		
C3	0.082	0.106	0.167	0.115	0.144	1.000	
C11	0.029	0.114	0.338	0.405	0.021	0.024	1.000

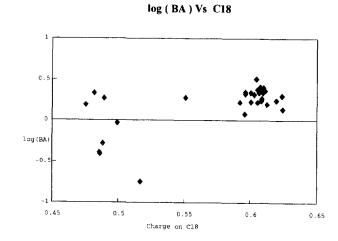


Figure 2. Activity log(BA) as a function of the charge on C15.

Figure 3. Activity log(BA) as a function of the charge on C18.

$$\begin{aligned} \log(BA) &= 4.2511(0.5557)C18 \\ &- 0.0489(0.0099)FOCT + 153.69(67.47)C5 \\ &+ 2.1104(1.4341)O20 + 1.6851(1.1929)C3 \\ &- 4.4235(3.3257)C11 + 38.06(0.14), \end{aligned} \tag{10}$$

$$n = 32$$
, $r = 0.884$, $r^2 = 0.781$, $t = 3.860$, $s = 0.0286$.

Out of equations (7)–(10), equation (9) is statistically significant and has a good correlation coefficient. The independent variables of equations (7)–(10) are not significantly cross-correlated which is evident from the correlation matrix (table IV). In equations (7)–(10) C18 has the highest correlation with log(BA). The plot of log(BA) as a function of C18 is given in figure 3. Equation (7) and equation (8) also reflects that when FOCT is added with C18 then the correlation coefficient and t-test are improved significantly.

No significant improvement was observed when parabolic relationships were searched after the elimination of C15 and the following equation was obtained:

$$log(BA) = 36.04(21.06)C18^2 - 35.76(23.10)C18$$

$$-0.0546(0.0092)FOCT + 146.64(64.94)C5$$

$$+2.1236(1.1664)C3 - 5.2716(3.2046)C11$$

$$+0.0734(0.0558)DIPOLE + 45.74(0.14),$$
(11)

$$n = 32$$
, $r = 0.898$, $r^2 = 0.807$, $t = 3.786$, $s = 0.0280$.

To investigate other relationships, C15 and C18 were eliminated and remaining descriptors were subjected to stepwise multiple parameter regression analysis. The best equation obtained was equation (12) which is statistically less significant than the previous equations:

$$n = 32$$
, $r = 0.849$, $r^2 = 0.721$, $t = 3.280$, $s = 0.0324$.

Equations (1)–(12) reveal that the electronic descriptors were the important factors in determining the antiinflammatory activity.

4. Conclusion

The above study allows to conclude that the electronic descriptors, especially partial atomic charges on C15 and C18, have an important effect in determining the oral antiinflammatory activity. It suggests that

esterification and amidation of the carboxylic acid group of the molecule affects the electron density distribution and are responsible for the change in pharmacokinetic behaviour which ultimately affects the pharmacological activity of the molecule. This study pleads for careful considerations to be observed during the masking of carboxylic acid groups to minimize gastrointestinal disturbances.

Acknowledgements

The authors wish to thank M/s Torrent Pharmaceuticals Ltd., Ahmedabad, India, for providing access to molecular modeling software facilities and to Director S.G.S.I.T.S., Indore, India, for providing the necessary facilities for this work. S.A. is grateful to the Ministry of Human Resource Development, New Delhi, India, for providing a research fellowship for this project.

References

- [1] Flower R.J., Moncade S., Vane J.R., in: Gilman A.G., Goodman L.S., Gilman A. (Eds.), The Pharmacological Basis of Therapeutics (6th ed.), MacMillan, New York, 1980, p. 712.
- [2] Kurokawa M., Uno H., J. Med. Chem. 33 (1990) 504.
- [3] Gund P., Jensen N.P., Non-Steroidal Antiinflammatory and Antiarthritic Drugs. In: Topliss J.G. (Ed.), Quantitative Structure-Activity Relationship of Drugs, Academic Press, New York, 1983, p. 285.
- [4] Cerius² version 1.6, Biosym/Molecular Simulations Inc., 9685 Scranton Road, California, USA.
- [5] Fletcher R., Reeves C.M., Comput. J. 7 (1964) 149.
- [6] Pearlman R.S., in: Yalkowsky S.H., Sinkula A.A., Valvani Y.C. (Eds.), Physical Chemistry Properties of Drugs, Dekker, New York, 1964.
- [7] Hopfinger A.J., Conformational Properties of Macromolecules, Academic Press, New York, 1973.
- [8] Leffler J.E., Grunwald E., Rates and Equilibrium Constants of Organic Reactions, Wiley, New York, 1963.
- [9] Hansch C., Leo A., Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, 1979.
- [10] Dunn III W.J., Eur. J. Med. Chem. 12 (1977) 109.
- [11] Van de Waterbeemd H., Testa B., Adv. Drug. Res. 16 (1987) 85.
- [12] James K.C., in: Smith H.J. (Ed.), Smith and Williams 'Introduction to the Principles of Drug Design', Wright, 1988, ch. 8.
- [13] Hill T.L., Introduction to Statistical Thermodynamics, Addison Wesley, Reading, MA, 1960.
- [14] Marsili M., Gasteiger J., Croat. Chem. Acta 53 (1980) 601.
- [15] Bottcher C.J.F., Theory of Electric Polarization, Elsevier, Amsterdam,
- [16] Del Re G., Biophys. Acta 75 (1963) 153.
- [17] Gasteiger J., Marsili M., Tetrahedron Lett. 34 (1978) 3181.
- [18] Gasteiger J., Marsili M., Tetrahedron 36 (1980) 3219.
- [19] Pople J.A., Beveridge D.L., Approximate Molecular Orbital Theory, McGraw Hill, New York, 1970.
- [20] Pople J.A., Segal G.A., J. Chem. Phys. 44 (1966) 3289.
- [21] Stane A.J., Alderton M., Mol. Phys. 56 (1985) 1047.
- [22] Williams D.E., in: Lipowitz K.B., Boyd D.B. (Eds.), Review of Computer Chemistry, VCH, New York, 1991, p. 219.
- [23] Draper N.R., Smith H., Applied Regression Analysis, Wiley, New York, 1966.